微信关注,获取更多

在哪里发布数学概念(数学论文一般在哪里发表)




各位老铁们,大家好,今天由我来为大家分享在哪里发布数学概念,以及数学论文一般在哪里发表的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

本文目录

  1. 描写数学之美的诗句
  2. 数学游戏
  3. 考研大纲一般在哪里发布呢找不到

一、描写数学之美的诗句

关于数学之美的诗句 1.关于数学的诗句

与数学有关的诗歌音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学能使人获得智慧,科技可以改善物质生活,但数学却能提供以上的一切。我们想变枯燥乏味的数学学习为欣赏美发现美的审美过程,完全可以渗透一些与数学有关的诗歌,甚或者引导学生去创作。我曾听过青岛二中老师的课和教研活动,他们的学生们在这方面所展现的能力和才情使我惊讶。可见要相信学生的创造力想象力远超过我们所能想象,我们所能做的应该做的,就是给他们一个启发,搭建一个平台。下面附上我所积累的一些与数学有关的诗歌。一、与课本章节有关的诗歌第一章《集合、映射与函数》:日落月出花果香,物换星移看沧桑。因果变化多联系,安得良策破迷茫?集合奠基说严谨,映射函数叙苍黄。看图列表论升降,科海扬帆有锦囊。第二章《指数函数、对数函数和幂函数》:晨雾茫茫碍交通,蘑菇核云蔽长空;化石岁月巧推算,文海索句快如风.指数对数相辉映,立方平方看对称;解释大千无限事,三族函数建奇功。二、诗歌数学题朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:”今有方池一所,每面丈四方停。葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?”在元代有一部算经《详明算法》内有关于丈量田亩求法:”古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。若见涡斜并凹曲,

一眼看去有二三里远,薄雾笼罩着四五户人家。

村庄旁有六七座凉亭,还有许多鲜花正在绽放。

赏析:诗人用“小学数数”的方式将乡村美景一一道来,通俗易懂,仿若画面就在眼前一般。

一蓑一笠一扁舟,一丈丝纶一寸钩。

一曲高歌一樽酒,一人独钓一江秋。

戴着一顶斗笠披着一件蓑衣坐在一只小船上,一丈长的渔线一寸长的鱼钩。

高声唱一首渔歌喝一樽酒,一个人在这秋天的江上独自垂钓。

一片二片三四片,五片六片七八片。

千片万片无数片,飞入梅花总不见。

一片一片的雪花纷纷扬扬的从天而落,整个天地都白茫茫的一片。

飘落的雪花落入芦花丛里,和白色的芦花融为一体,叫人难以分辨。

赏析:人使用数字,主要是展现雪景的美妙以及美好,在人们眼前展现一幅大雪纷的景象,仿佛雪景就在读者的眼前,让人有身临其境之感。

两个黄鹂鸣翠柳,一行白鹭上青天。

窗含西岭千秋雪,门泊东吴万里船。

两只黄鹂在翠绿的柳枝间鸣叫,一行白鹭向湛蓝的高空里飞翔。

西岭雪山的景色仿佛嵌在窗里,往来东吴的航船就停泊在门旁。

明月别枝惊鹊,清风半夜鸣蝉。稻花香里说丰年,听取蛙声一片。

七八个星天外,两三点雨山前。旧时茅店社林边,路转溪桥忽见。

皎洁的月光从树枝间掠过,惊飞了枝头喜鹊,清凉的晚风吹来仿佛听见了远处的蝉叫声。在稻花的香气里,人们谈论着丰收的年景,耳边传来阵阵青蛙的叫声。

天空乌云密布,星星闪烁,忽明忽暗,山前下起了淅淅沥沥的小雨。往日的小茅草屋还在土地庙的树林旁,道路转过溪水的源头,它便忽然出现在眼前。

赏析:作者自己夜行黄沙道中的具体感受,描绘出农村夏夜的幽美景色,形象生动逼真,感受亲切细腻,笔触轻快活泼,使人有身历其境的真实感。

硬说数学科学无美可言的人是错误的.美的主要形式是秩序、匀称与明确.——亚里斯多德

感觉到数学的美,感觉到数与形的协调,感觉到几何的优雅,这是所有真正的数学家都清楚的真实的美的感觉.——庞加莱

数学之美是很自然明白地摆着的.——哈尔莫斯

我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的.

我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美.——韦尔

在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多.——斯蒂恩

纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的.——哈尔莫斯

对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力.——克莱因

数学家如画家或诗人一样,是款式的制造者。。数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地.——哈代

一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的.——库默

难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目.这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了.——西尔弗斯特

美是人类创造性实践活动的产物,是人类本质力量的感性显现。

通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。数学美是自然美的客观反映,是科学美的核心。

简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。历史上许多学者、数学家对数学美从不同的侧面作过生动的阐述。

普洛克拉斯早就断言:“哪里有数学,哪里就有美。”亚里士多德也曾讲过:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。

因为美的主要形式家是“秩序、匀称和确定性”,这些正是数学研究的原则。”我国著名数学家华罗庚说过:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”

数学家徐利治说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。”

以上的论述可见,数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。

德国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。”数学美与其它美的区别还在于它是蕴涵在其中的美。

打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。

二是长期以来,我们的数学教材过分强调逻辑体系和逻辑推演,忽视数学美感、数学直觉的作用,长此以往,学生将数学与逻辑等同起来。一味注重数学的逻辑性而忽视了数学本身的美,学习的过程中就会感到枯燥无味缺乏兴趣。

大多数的数学家会由他们的工作及一般数学里得出美学的喜悦。他们形容数学是美丽的来表示这种喜悦。

有时,数学家会形容数学是一种艺术的形式,或至少是一个创造性的活动。通常拿来和音乐和诗歌相比较。

数学之美还在于其对生活的精确表述、对逻辑的完美演绎。可以说正是这种精确性才成就了现代社会的美好生活。

伯特兰·罗素以下列文字来形容他对数学之美的感觉:Mathematics, rightly viewed, possesses not only truth, but supreme beauty— a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry.(The Study of Mathematics, in Mysticism and Logic, and Other Essays, ch. 4, London: Longmans, Green, 1918.)翻译:数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。

(研究数学,在神秘主义和逻辑,与其他论文,概括。4、伦敦:浪漫书屋,绿色,1918年。)

保罗·埃尔德什形容他对数学不可言说的观点,而说:“为何数字美丽呢?这就像是在问贝多芬第九号交响曲为什么会美丽一般。若你不知道为什么,其他人也没办法告诉你为什么。

我知道数字是美丽的。且若它们不是美丽的话,世上也没有事物会是美丽的了。”

它的最美之处莫过于在无形之中就让你思维变得敏捷.考虑事情时,不在那么偏激,那么单一.作为一个公民来说了不了解它是一个后话,至少应该不否定它.尤其是学生.让我们先来看看看下面的算式:1 x 8+ 1= 912 x 8+ 2= 98123 x 8+ 3= 9871234 x 8+ 4= 987612345 x 8+ 5= 98765123456 x 8+ 6= 9876541234567 x 8+ 7= 987654312345678 x 8+ 8= 98765432123456789 x 8+ 9= 9876543211 x 9+ 2= 1112 x 9+ 3= 111123 x 9+ 4= 11111234 x 9+ 5= 1111112345 x 9+ 6= 111111123456 x 9+ 7= 1。

利用诗歌表达数学思想、概念的诗歌比较多。

例如张景中院士主编的新课程高中数学教材中(该教材是湖南教育出版社新课程标准实验教材),在每一章都有一首诗歌。例如第一章《集合、映射与函数》时,说到:日落月出花果香,物换星移看沧桑。

因果变化多联系,安得良策破迷茫?集合奠基说严谨,映射函数叙苍黄。看图列表论升降,科海扬帆有锦囊。

当到第二章《指数函数、对数函数和幂函数》时,说到:晨雾茫茫碍交通,蘑菇核云蔽长空;化石岁月巧推算,文海索句快如风.指数对数相辉映,立方平方看对称;解释大千无限事,三族函数建奇功。在学习完这两章内容后再仔细研读,别有一番感受。

二、诗歌数学题数学很抽象,又令人感到枯燥无味,怎样使数学易于理解,为人们所喜爱,在这方面,中国古代数学家做出许多尝试,歌谣和口诀就是其中一种,让人们在解答数学问题的同时,也感受到了诗歌的魅力。从南宋杨辉开始,元代的朱世杰、丁巨、贾亨、明代的刘仕隆、程大位等都采用歌诀形式提出各种算法或用诗歌形式提出各种数学问题。

朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:”今有方池一所,每面丈四方停。

葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。

葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?”在元代有一部算经《详明算法》内有关于丈量田亩求法:”古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。

若见涡斜并凹曲,直须裨补取为方。却将黍实为田积,二四除之亩法强。

“明代程大位《算法统宗》是一本通俗实用的数学书,也是数字入诗代表作。《算法统宗》全书十七卷,广泛流传于明末清朝,对于民间数学知识的普及贡献卓著。

这本书由程大位花了近20年完成,他原本是一位商人,经商之便搜集各地算书和文字方面的书籍,编纂成一首首的歌谣口诀,将枯燥的数学问题化成美妙的诗歌,让人朗朗上口,加强了数学普及的亲合力。程大位还有一首类似的二元一次方程组的饮酒数学诗:”肆中饮客乱纷纷,薄酒名醨厚酒醇。

好酒一瓶醉三客,薄酒三瓶醉一人。共同饮了一十九,三十三客醉颜生。

试问高明能算士,几多醨酒几多醇?”这道诗题大意是说:好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒一位客人。如果33位客人醉倒了,他们总共饮下19瓶酒。

试问:其中好酒、薄酒分别是多少瓶?著名《孙子算经》中有一道”物不知其数”问题。这个算题原文为:”今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰二十三。

“这个问题流传到后世,有过不少有趣的名称,如”鬼谷算”、”韩信点兵”等。程大位在《算法统宗》中用诗歌形式,写出了数学解法:”三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。

“这首诗包含着著名的”剩余定理”。也就说,拿3除的余数乘70,加上5除的余数乘21,再加上7除的余数乘15,结果如比105多,则减105的倍数。

上述问题的结果就是:(2*70)+(3*21)+(2*15)-(2*105)=23。在印度学者婆什迦罗的著作中,也有这样一首数学诗:”素馨花开香扑鼻,诱得蜜蜂来采蜜。

熙熙攘攘不知数,一群飞入花丛里。试问此群数有几?且把条件来分析:全体之半平方根,另有两只在一起;总数的九分之几,徘徊在外做游戏。

“你如果列出无理方程运算后,则可得出此群蜜蜂为72只。另外有一首写荷花的数学诗,:”平平湖水清可鉴,石上半尺生红莲;出泥不染亭亭立,忽被吹到清水面。

渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”这是一首多么富有诗情画意的代数题!你看,长在湖里的红莲,露出湖面的长度是半尺,它被风吹向一边,红莲顶上的花离原水面的距离为2尺,问湖水有多深?根据勾股定理列式算得,湖深为3.75尺。三、数字入诗:最常见的入诗的数字是一。

“一”虽说是个数字概念,其实,把”一”字恰当地运用到诗文中,会产生美的艺术效果。例如清代诗人陈秋舫写过一首以《题秋江独钓图》为题的”一”字诗:”一帆一桨一扁舟,一个渔翁一钓钩,一俯一仰一场笑,一江明月一江秋。

“五代时南唐后主李煜在位时,曾为宫廷画家卫贤所作《春江钓叟图》题词二首:”浪花有意千重雪,桃李无言一队春;一壶酒,一竿身,世上如侬有几人。””一棹春风一叶舟,一纶茧缕一轻钩;花满渚,酒满瓯,万顷波中得自由。

“把一个个洒脱的渔翁形象刻画得栩栩如生。又如元曲一首小令《雁儿落带过得胜令》:”一年老一年,一日没一日,一秋又一秋,一辈催一辈,一聚一离别,一苦一伤悲。

一榻一身卧,一生一梦里,寻一个相识,他一会,咱一地,都一般相知,吹一回,唱一回。”诗中22个”一”字不断重复,反映了人生虚幻的凄苦。

其写法奇特,而以俚语取胜。有些诗歌会把一到十十个数字镶嵌到诗中。

宋代理学家《邵康》云:”一去二三里,烟村四五家,亭台六七座,八九十枝花。”此诗妙在顺序嵌进十个基数,寥寥数语,描绘出一幅恬静淡雅的田园景色,勾起人们不尽的情思和神往。

6.求一篇关于数学之美的作文1000字

数学作为所有科学的基础,其作用众所周知。

进入现代文明的我们早就习惯于生活在数字的海洋中,用 1、2、3、4进行着基本的沟通交流。但与其巨大社会作用相反的是很少有人真正地喜爱数学,真正地醉心于数学研究,挖掘深藏的数学之美。

人们常说“不要以貌取人”。作为一门用数字和图形说话的学科,数学就像是科学童话里的灰姑娘,其枯燥、乏味的表象下面,隐藏着最动人、美丽之处。

首先我认为数学之美,美在神秘。简简单单一个符号就可以勾勒出无穷无尽的自然真理。

牛顿运动三大定律,只用几个简单的数学公式,就能够囊括浩瀚宇宙的运动规律。对于每一个乐于探求真相的人来说,数学可以说是他们最好的旅游胜地。

一群群数字、一个个图形在这里交织出了一幅幅最动人的风景。这片风景连绵不断却又迥然不同,当你徜徉在数学的海洋中,你绝不会有“高处不胜寒”的感慨,也不会有“一马平川任我行”的放纵,有的只是寻幽探胜的意趣和对自然真理的崇敬之情。

就连中国最著名的数学家陈景润在摘下数学王冠上的宝石后,依然要怀着朝圣的心情在数学研究的道路上谨慎前行。其次,我认为数学之美,美在应用。

“金玉其外,败絮其中”常被我们用来贬斥那些虚有其表的人和事,可见我们评价美的标准,不光是因为其具备美好的内外部特征,更要注重其是否具有实用价值。“数学是众科学之母”一句话就说尽了数学在社会生活各领域的价值体现。

购物时用数学,电脑软件的开发、一座城市的交通路线设计、整个地球的网络建设,都离不开数学。甚至于艺术领域,也有数学的身影;数字按不同的音高排列,是悠扬的乐谱;雕塑和绘画中,哪一个少得了数学黄金分割的定律?故宫没有一根钉子的角楼,重檐斗拱的紫禁城,哪一个离得开严谨的数学知识?可以毫不夸张的说,正是数学用数字和图形搭建了人类社会不断前进的阶梯。

数学之美犹如优美和谐的乐曲,别具一格的绘画,雄伟壮美的建筑,同样会使数学学习者们激情荡漾。有着这样的奉献和功绩,我们能说数学不美吗?最后我认为数学之美,美在于一次一次挑战后的成功。

而这种美感的获得,常常以长时间的苦苦思考及单调乏味的运算为代价,而且必须一次次地接受失败与错误,必须接受枯燥学习所带来的孤独。屡战屡败,屡败屡战,最后你可能在冲凉时,或者刷牙时,突然间豁然开朗,仿佛音乐突然响起,问题好像一下子就解决了。

那时候的我,往往有一种人在高山飘飘然的感觉。这种美是无与伦比的。

这就是我眼中的数学质朴而充满魅力。作为科学界里一块奇异的宝石它必将在新时代里散发出灿烂的光芒,用它特有的美引导我们不断前行。

7.谁帮我写一首赞美数学的诗,越能掰越好

闪耀着比珠宝还珍贵的智慧之光;

若隐若现,引来了多少杰出的男子来猎色,

叫那些能见到你的人,和欣赏你的人

数学确属美妙的杰作,宛如画家或诗人的创作一样——是思想的综合;如同颜色或词汇的综合一样,应当具有内在的和谐一致。

对于数学概念来说,美是她的第一个试金石;世界上不存在畸形丑陋的数学。——G.H.Hardy音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

——F.Klein哪里有数,哪里就有美。——Proclus当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。

——柯普宁(前苏联哲学家)这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(-1827)社会的进步就是人类对美的追求的结晶。

——马克思(K.Max)数学,如果正确地看,不但拥有真理,而且也具有至高的美。——罗素(B.Russell)数学能促进人们对美的特性——数值、比例、秩序等的认识。

——亚里士多德(Aristotle)美包含在体积和秩序中。——黑格尔(G..W.F.Hegel)一个没有几分诗人才能的数学家决不会成为一个完全的数学家。

——魏尔斯特拉斯(KarlWeierstrass1815-1897)纯粹数学,就其本质而言,是逻辑思想的诗篇。——爱因斯坦数学如同音乐或诗一样显然地确实具有美学价值。

——雅可比数学是创造性的艺术,因为数学家创造了美好的新概念;数学是创造性的艺术,因为数学家的生活、言行如同艺术家一样;数学是创造性的艺术,因为数学家就是这样认为的。——哈尔莫斯音乐与代数很类似。

——哈登伯格硬说数学科学无美可言的人是错误的。美的主要形式是秩序、匀称与明确。

——亚里斯多德数学之美是很自然明白地摆着的。——哈尔莫斯我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的。

——冯.诺伊曼我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美。——韦尔在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多。

——斯蒂恩纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。——哈尔莫斯对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力。

——克莱因数学家如画家或诗人一样,是款式的制造者。

数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地。——哈代一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。

——库默难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目。这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了。

——西尔弗斯特一般地说,我更想把数学视为是艺术,而不是科学。因为我们可以说,数学家的活动,当他受外部的理性世界所引导,而不是被控制时,不断地进行创造性的活动,与一个艺术家、一个画家的活动相类似,有着实在的,不是虚幻的相似点。

数学家这一方面的严密演绎推理可以比喻为画家那一方面的绘画技巧。恰如没有一定技巧的人不能成为一位好画家一样,没有一定的精密推理能力的人不能成为一位好的数学家。

但是,这些尽管是他们的基本特质,还不足以使一个画家或数学家名副其实,画图技巧与推理能力,说实在的,终究不是最重要的因素。远为敏感的,为二者都是主要的一类特质是想象力,它才能造就一名杰出的艺术家或杰出的数学家。

——博歇我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。

——贝尔斯在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是确实的如此美好。——苏利文。

二、数学游戏

今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。

——————————————————————————–

–发布时间:2004-3-20 13:36:26

今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?

看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做。”

我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完。为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来。但是我并没灰心,继续做了下去,我做了出来。

根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积。

所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面。

列算式是628×6-628×3.14÷4×2+628×3.14

——————————————————————————–

–发布时间:2004-3-20 13:36:49

今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起。我跑过去一年,原来是抓奖游戏。“哼,抓奖有什么好玩的。”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了。”我急切地问:“是什么呀!”“50元钱。”那人噔大眼睛说。一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试。”说完,我便问店主怎么抓法。店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖。”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主。

尽管,这可以抓10次,但那份大奖我还是没有拿到。

回到家之后,我想了想,感觉有点不对劲。我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱。但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱。

最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪了。

——————————————————————————–

–发布时间:2004-3-20 13:37:21

题目:有粗细不同的两枝蜡烛,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时。有次停电,将这样的两枝求用过的蜡烛同时点燃,来电时,发现两枝蜡烛所剩的长度一样,问停电多长时间?

解题思路:如高粗蜡烛长为1,燃烧的速度分别为:(1)1÷2=1/2(2)2÷1=2要设停电时间为X小时那么式子就是:1—1/2X=2—2X分析已知细蜡烛占粗蜡烛的1/2,粗蜡烛就是细蜡烛的2倍,求停电多少小时,也就是第一根燃烧多少时。

——————————————————————————–

–发布时间:2004-3-20 13:37:57

今天下午,我在《小学生双色课课通》上看到了这样一道题。

一个圆锥底面半径是8分米,高的长度与底面半径的比3:2,这个圆锥的体积是多少立方分米?

分析:这是一道按比例分配的应用题与圆锥方面的题相结合的应用题。求圆锥的体积是多少,要知道圆锥的底面积和高,题中告诉了底面半径,可求出底面积,而高却不知道,可以根据一个条件求出,可将比转化成一个数占已知数的几分之几,即可知道高占底面半径的3/2。算出高后,然后根据“V=SH÷3”算出圆锥的体积。

——————————————————————————–

–发布时间:2004-3-20 13:38:34

今天早晨,我制作了一个小电灯,用的是两节电池和一根钢丝和一个小电灯泡制做的,先准备了两个电灯泡,生怕晚上玩的时候会闪了。到了晚上,我出去转悠一圈,我拿出了小电灯一照了一圈,我发现有时照出一个面,有时照出的是一条线,这是一次意想不到的小发现,给我带来了兴趣,去探索它到底为什么并且获得了答案。它不但给我带来了对数学的兴趣,又提高了我对生活新的看法,希望大家在生活中,要勤于发现,要做一个善于观察、善于思考的好学生。

——————————————————————————–

–发布时间:2004-3-20 13:39:19

这几天我一直在思考着另外一种求圆柱体积的方法,凭着我的感觉我列出了这样一个算式:直径×直径×高×3.14÷4。

放学回到家,我就开始证明这个式子到底对不对,我试了一下,用课本上的解法和我的这种解法来算一个圆柱的体积完全一样,我又试了很多次结果都一样。

我感到非常地纳闹,我的这种解法到底是什么意思,经过我一番的思考和证明发现原来是把圆柱看成一个相当于直径和高相等的正方体。然后求出正方体的体积,再根据圆柱与正方体的比是:3.14∶4就成了一个圆柱的体积了。

这只是我个人的想法,请广大爱好者参与研究,给予指正。

——————————————————————————–

–发布时间:2004-3-20 13:40:00

今天我在看报纸的时候看见了这样一个题目:求圆锥的表面积。

[题目]一个圆锥,底面直径是6米,圆锥的顶点到底面圆周上任点长是5米,求这个圆锥的表面积。

我虽没有学习过求圆锥的表面积,但已经学习过圆柱的表面积,通过圆柱的表面积的解题方法知道:圆柱的表面积等于一个侧面加上两个底面积,而圆锥的表面积就是一个侧面积加上一个底面积,侧面是一个扇形,我虽没学过但我查了资料知道求扇形的面积是:扇形的面积=弧长×圆半径×1/2,题目中已经告诉了我们圆锥顶点到底面圆周上任一点长是5米,而弧长是3.14×6=18.84(米),扇形面积是18.84×5×1/2=47.1(平方米),最后用扇形面积加上底面积,就得到圆锥的表面积:47.1+3.14×(6/2)×(6/2)=75.36(平方米)。

数学是思维的体操,我们只要勤学善思,就一定会攻克难题,走上成功之路!

——————————————————————————–

–发布时间:2004-3-20 13:40:31

今天,我学习了比例的基本性质,我感到万分的不解,为什么比例的外项之积等于内项之积。我经过了冥思苦想终天明白了。

假如 b/a=c/d,将a扩大d倍,要想使比值不变,也必须将b扩大a倍,也就变成了bd/ad;再把等号右边比中的d扩大a倍,要想使比值不变,也要把c扩大a倍,就变成了ca/da。那么比例就变成了bd/ad=ca/da,把等号左右的ad消去,所以就变成了ad=ca。

——————————————————————————–

–发布时间:2004-3-20 13:41:01

每逢清明节,巨山上便会人山人海,于是一些骗子便想出了一些骗人的把戏来骗人,比如:像圆盘赌物。

道具非常简单,在一块木板上画一个大圆,大圆中心用钉子固定一根可以转动的指针。大圆被分成24个相等的格,格内的针可以转,格内分别写着1—24个相等的数,在单数格中没有值钱的,而双数中差不多都是值钱的。

玩法也很简单,把指针先拨到1,然后你拨动指针,指针就开始旋转,最后停在某个格内,接着再按着指针所在的格上标的数,再把指针拨动,N-1格,N是格子上所标的数。

这只不过是一个小小的数学游戏,其实你无论拨到哪格,只能吃亏,不能得利。因为当指针转到奇数格上,拨动的格数便是奇数-1=偶数,奇数+偶数只等于奇数,所以不可能转到偶数格上,就得不到值钱的东西,假如指针转到偶数格上,拨动的格数便是偶数-1=奇数,奇数+偶数=奇数,还不能得到值钱的东西。

——————————————————————————–

–发布时间:2004-3-20 13:41:37

今天我听了一节用多媒体进行教学《质数和合数》的一堂公开课,听后彼有一番感慨,本来运用多媒体进行教学是为了帮助教者的一种组织手段,能够更好得为教学服务,增加教学的新颖性、独特性、深化性,更加具有吸引性,这么长一段时间提出对学生进行素质化教学,但是听了几节运用多媒体进行教学的课,却都流露出注入式的影子,不错注入教学以前已经扎根,但我们一定在平时的教学中得慢慢改之;另一方面运用多媒体教学更能调动学生的积极性,教学是围绕学生服务的并不是围绕计算机服务。是否能引出广大一线教师的共鸣!

——————————————————————————–

–发布时间:2004-3-20 13:42:16

今天是一个阳光明媚的中午,我正在家里看数学报,无意中看到求比值与化简比这个题目,我想这不是上学期学过的吗?但是我又一想,我还是看一看吧!

“求比值”与“化简比”之间既有区别,又有联系。同学们学习时,要注意以下几点:

1、求比值的目的是求一比的前项除以后项的结果;化简比的目的是把一比化成和它相等并且前、后项互质的整数比。

2、求比值与化简比的方法类似。有以下几种:

5/6∶1/2=(5/6×6)∶(1/2×6)①比值为5/3;②化简比为5∶3。

6.3∶0.9=6.3÷0.9①比值为7;②化简比为7∶1。

16∶20=16/20=4/5①比值为4/5或0.8;②化简比为4∶5。

3、求比值的结果是一个数,可以是整数,也可以是小数和分数;化简比的结果是一个比,它可以写成真分数或假分数的形式(见上例),不能写成整数、小数或带分数的,化简比的结果要读成几比几,如:16∶20化简比为4/5,应读作:4∶5。

通过这就可看出,只要我们多看一些关于数学方面的资料,你的成绩会提高的。

——————————————————————————–

–发布时间:2004-3-20 13:43:26

中午爸爸下班回来,哼着小调,兴高采烈地跨进家门我迎上去问道:“爸爸,今天有什么事这么高兴?”爸爸说:“这个月我涨工资了。”我问道:“那你现在一个月拿多少工资?”爸爸想了想,微微一笑说:“我比你妈的工资高,我俩的月工资加起来是2800元,月工资差是100元,你说我一个月拿多少工资?”

听了爸爸的话,我动手在纸上画出了线段图帮助我理解:

通过观察和思考,我很快算出了答案,并且告诉爸爸。首先把妈妈的工资看作和爸爸同样多,那么爸爸、妈妈的月工资一共是(2800+100)=2900元,再把月工资和平均分成2份,求出的1份就是爸爸的月工资。列式是:(2800+100)÷2=1450元。

爸爸听了,满意地直点头。这时,正在做饭的妈妈对我说:“你还有其它方法吗?”“还有其它方法?”我惊奇地说。我报着好奇的心情静下心来再次观察、思考,我发现此题关键是找出以谁作标准的问题,标准不同,方法也就不同。于是,我有了第二种方法:就是以妈妈的工资作标准,假设爸爸和妈妈的工资同样多,那么俩人的月工资和就是(2800-100)=2700元,再把月工资和平均分成2份,求出的1份就是妈妈的月工资最后加上爸爸比妈妈多的100元,就是爸爸的月工资。列式为(2800-100)÷2+100=1450元。

听完了我第二种方法的介绍,爸爸、妈妈笑了……

——————————————————————————–

–发布时间:2004-3-20 13:44:00

由于容积与体积的计算方法相同,因此不少同学认为容积就是体积。其实,体积与容积是两个不同的概念,它们是有区别的:

一、意义不同。体积是指物体所占空间的大小,而容积是指木箱、油桶等所能容纳物体的体积。一个物体有体积,但它不一定有容积。

二、测量方法不同。求物体的体积是从物体的外面测量它的长、宽、高进行计算,而求物体的容积则必须从里面来测量它的长、宽、高,然后计算。因此,对于同一个物体,一般地说,它的容积要比体积小。

三、单位名称不完全相同。体积单位一般用:立方米、立方分米、立方厘米。固体、气体的容积单位与体积单位相同,而盛液体的容积单位一般用升、毫升。

——————————————————————————–

–发布时间:2004-3-23 18:01:14

[问题]如图(1)这样的8行8列的数阵,其中A、B、C、D、E、F、G、H、I、J、K、L、M、N、O表示从小到大的15个连续自然数,把这个数阵分成四个4行4列的数阵图(2)。已知图(2)的第四部分中所有数的和是576。试问,这个8行8列的数阵中所有数的和是多少?

(分析与解)大家看到这个题目,也许会把工作为切入点,把它设为X,然后根据题目所提供的条件把图(2)的第四部分列成一个等式X+2(X+1)+3(X+2)+4(X+3)+3(X+4)+2(X+5)+X+6=576,求出X=33,也就是I=33。这样的15个自然数依次便为25、26、27……39。求出了每个数的大小,那么就可以计算出图(2)的所有数字之和了,等于2048。

或者算出工之后,只算出H=32。然后把这15个连续自然数两两配对组成中间数H、,A与O等于2H,2个B与2个N组成4H,3个C与3个M组成6个H……这样一共可以组成56个H,再加上原有的8个H,共是64个H。所有数字之和就是64×32=2048。

其实这题还有一个最简便的方法,从整体考虑,就是说不需要求出数阵上任何数的具体大小,只需要比较一下4个部分之间存在的关系就行了。第二部分的第一个数E比第四部分的第一个数I少4,第二部分中的第二数F比第四部分中的第二个数J少4……,第二部分中的每个数都比第四部分中对应的数少4,第二部分就比第四部分少了16×4=64。同理,第一部分比第二部分少64。而第二部分与第三部分相等。所以这个数阵的所有数字之和就是576-64×2+(576-64)×2+576=2048。

邳州市八路实验小学六(7)班马维力

——————————————————————————–

–发布时间:2004-3-23 18:01:47

[问题]在正六边形ABCDEF上,一只青蛙在顶点A处开始跳动,它每次可随意地跳到相邻两个顶点上,如果在5次之内跳到D点,那就停止跳动;如果5次之内不能到达D点,那在跳到第5次之后就停止跳动。试问:这只青蛙从开始到停止,不同的跳法有几种?

一、5次之内跳到D点。有2种跳法:AFED,ABCD。

二、青蛙跳了5次。先假设5次之内青蛙跳到D点之后还能继续跳。青蛙从A点开始,有两种跳法(到F或B),其实青蛙每一次都有两种跳法。根据乘法原理,青蛙跳了5次便有2*2*2*2*2=32种跳法。而实际上,青蛙跳3步到D处就停止跳动了,所以还要减去跳到D处又跳的走法。在第一种情况中,已经明确青蛙从A跳3次到D有两种走法,从D跳两步有DED,DEF,DCD,DCB四种跳法。再一次根据乘法原理,便有2*4=8种跳法。所以在这种情况下,青蛙有32-8=24种跳法。

综合以上两种情况,青蛙有2+24=26种跳法。

江苏省邳州市八路实验小学六(3)班晁雪傲

——————————————————————————–

–发布时间:2004-3-23 18:03:14

今天由于下雨,我不能出去玩只好在家无聊之余,我便从书包里拿出一张数学报看,突然看到:怎样防止写错0。正好我们将要进入全面复习,一开始就得复习整数的读写法。由于在多位数的读法中,对“零”的处理有多种情况。如读一个“零”,有的表示一个0,有的却表示几个0,有时没有读0,但写数时却要写一个或几个0。这样在写多位数时就很容易出现少写或多写0的错误。怎样防止写错多位数中的0呢?可以采取以下几条措施:

在写多位数时,先找出级名“亿”、“万”字,在级名下各画一条竖直的虚线,表示分级线,然后在万绒有,个级部分分别画四条短横线,表示这两级应写满四个数字。写数时,先写亿级,再写万级,最后写个级。写万级、个级数时,如果每级不足四个数字,就在一个单位也没有的数位上,用0补足。

当多位数“级中”连续有两个零,“级头”连续有两个或三个零时,最容易少写0。如上面第二个数,错写成32040009。如果在写数时能确定它的最高位是十亿位,有十位数,那么马上就会发现32040009肯定写错了,因为这是八位数。

——————————————————————————–

–发布时间:2004-3-30 15:37:43

电扇厂计划20天生产电扇1600台,生产5天后,由于改进了技术,工作效率提高25%,完成任务还需要多少天?

分析:这题可以通过转化,用正比例方法解,设原来效率是“1”,则实际效率是原来的(1+25%)=5/4,那么实际效率与原来效率的比是5/4∶1=5∶4,因为效率与时间成反比例,因此实际与计划所需时间的比是4∶5,如果设实际还需要X天,原来的天数是20-5=15(天),于是,可用正比例方法解:

——————————————————————————–

–发布时间:2004-3-30 15:38:12

有人说:“1、2、3、4、5、6、7、8、9、0,世间一切事,离它都不行。”

有人说:“数学真枯燥,十个数字颠过来倒过去。”

两种截然相反的观点。谁对?谁错?还是让事实说话吧!18世纪,英国有位叫桑克斯的数学家,用了近二十年的时间仅凭手算,将π值计算到小数部分第707位。如果数字真的枯燥的,他能耐得住那么长时间的寂寞吗?

中国当代数学家陈景润,为了攻克“哥德巴赫猜想”,演草纸用了几麻袋,如果数字真的是乏味的,他那持久的兴趣从何而来?“万物皆数”。颠来倒去的1、2、3、4……其中蕴藏着无穷奥妙。

1既不是质数,也不是合数,是自然数的单位。从它开始,1、2、3、4、5……无限地排列下去,形成一个有头有尾的“数字大军”,其队伍之大,可以绕地图无数圈。其中1最小,它站在数列的最前面。然而1又是最大的。整个地球,整个宇宙,整个……只需用1,就可以把它们概括无遗。

人类语言每时每刻都离不开1:一成不变、一目了然、一见如故、一日三秋、一暴十寒、一念之差、一孔之见、一枕黄梁……瞧,这个令人不起眼的1,不是很有趣吗?

——————————————————————————–

–发布时间:2004-3-30 15:38:39

今天,显得非常地无聊,就随手拿出一张《数学报》,突然一个非常的特别的题目把我吸引了。

[题目]有一张长方形铁皮,剪下图中的阴影部分,正好能做成一个圆柱体这个圆柱体的底面半径为2分米,那么原来长方形铁皮的面积是多少平方分米?

[分析与解题]仔细观察右图,可以发现阴影长方形的宽不可能是这个圆柱体的底面周长,那么,圆柱体的底面周长是阴影长方形的长,另外,我们还可以发现长方形铁皮的宽,即圆柱体的高是圆柱底面直径的2倍,圆柱的底面直径+底面周长=长方形铁皮的长。因此,长方形铁皮的长是2×2+2×3.14×2=16.56(分米)宽是2×2×2=8(分米)原来长方形铁皮面积是16.56×8=132.48(平方分米)。

——————————————————————————–

–发布时间:2004-3-30 15:39:19

[题目]某大厅有两根圆柱形木柱,木柱的底面直径是0.6米,柱高是6米,如果要在它们的表面积重新涂上一层油漆,油漆的部份面积有多少平方米?

小强看完这题之后,觉得这题很简单,很快列出算式并求出油漆的部份是多少平方米。

3.14×(0.6÷2)×(0.6÷2)+3.14×0.6×6×2=23.7384(平方米)。仔细分析题意,我们可以发现,小强的这样想法是完全错误的,错误的原因就是没有结合实际想问题。木柱虽然是圆柱形,但就实际问题来说油漆的部分不包括上底面和下底面。因此要求油漆部分的面积就是求这两根圆柱形的木柱的侧面积,列式应为:3.14×0.6×6×2=22.608(平方米),答:油漆部份的面积有22.608平方米。

——————————————————————————–

2、是偶数是最小的质数,也是质数中存在的唯一的一个偶数,“一分为二”。任何一个数用2去除,都能分得公平,不会留下余灵数。

2、反映了事物的两个方面:阴与阳、奇与偶、天与地、生与死、方与圆、大与小、高与低、长与短、前与后、动与静、虚与实、黑与白、贵与贱、贫与富……等等,它们两两成对,彼此依存,果真有“无独有偶”!

在平面上,只有具备两点才能画一条直线;两条直线相交才能构成角;两条直线永不相交,就叫做“平行”。

古希腊人把3称作“完善数”,说它体现了“开始、中期和终了”,因而具有神性。

在中国,老子说:“道生一、一生二、二生三、三生万物。”

3、在数字链中是非常重要的一环。

三人为众,三人成虎,三人行必有我师,三棱镜可以分析光谱。爱因斯坦总结成功的经验也是三条:艰苦的工作+正确的方法+少说空话。

三、考研大纲一般在哪里发布呢找不到

1、考研大纲是一本书,在书店里就可以买到。

2、考研大纲指由教育部考试中心组织编写,高等教育出版社独家出版的,规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策指导性考研用书。

3、它既是当年全国硕士研究生入学考试命题的唯一依据,也是考生复习备考必不可少的工具书。

4、计算机科学与技术学科联考计算机学科专业基础综合考试大纲:计算机学科专业基础综合考试涵盖数据结构、计算机组成原理、操作系统和计算机网络等学科专业基础课程。

5、要求考生比较系统地掌握上述专业基础课程的基本概念、基本原理和基本方法,能够综合运用所学的基本原理和基本方法分析、判断和解决有关理论问题和实际问题。

在哪里发布数学概念和数学论文一般在哪里发表的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!

未经允许不得转载:思思考研 » 在哪里发布数学概念(数学论文一般在哪里发表)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏