微信关注,获取更多

考研线性代数哪里最难(考研线性代数部分哪里是重点应该怎么复习)




大家好,今天小编来为大家解答考研线性代数哪里最难这个问题,考研线性代数部分哪里是重点应该怎么复习很多人还不知道,现在让我们一起来看看吧!

一、考研数学线性代数中有哪些比较难解的题型

考研数学线性代数中有一些比较难解的题型,以下是其中几个常见的:

1.矩阵的特征值和特征向量问题:这类问题需要求解一个矩阵的特征值和对应的特征向量,通常需要进行矩阵的对角化或者相似变换。在计算过程中,可能会涉及到复杂的矩阵运算和行列式展开,对于初学者来说比较困难。

2.线性方程组的解的问题:线性方程组的解可以通过高斯消元法、克拉默法则等方法求解,但是在一些特殊情况下,这些方法可能无法直接应用,需要进行变形或者引入辅助变量。这种情况下,解题思路比较复杂,需要灵活运用线性代数的知识。

3.矩阵的秩和线性相关性问题:矩阵的秩是一个重要的概念,它表示矩阵中行或列向量的最大线性无关组的数量。求解矩阵的秩通常需要通过行变换或者列变换进行,但是在某些情况下,矩阵的秩可能不容易直接计算。此外,判断一组向量是否线性相关也是一个常见的问题,需要通过向量组的秩和矩阵的秩之间的关系进行判断。

4.矩阵的逆和行列式问题:对于一个可逆矩阵,其逆矩阵可以通过伴随矩阵法或者高斯-若尔当消元法求解。然而,在一些特殊情况下,矩阵可能没有逆矩阵,或者行列式的值为0。这种情况下,需要对矩阵进行进一步的分析和处理,才能得到正确的结果。

总之,考研数学线性代数中的难解题型主要集中在矩阵的特征值和特征向量问题、线性方程组的解的问题、矩阵的秩和线性相关性问题以及矩阵的逆和行列式问题等方面。解决这些题目需要对线性代数的基本概念和方法有深入的理解,并且具备较强的逻辑思维和分析能力。

二、考研线性代数部分哪里是重点应该怎么复习

考研线性代数部分虽然比较抽象而且概念多、定理多、性质多、关系多,但相对去的其题型和考法都比较稳定。所以,如果大家花点心思弄懂就很容易拿分了,下面就分别谈谈线性代数六个章节的重点及复习建议,大家参考。

第一章行列式,本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理其他问题需要计算行列式,题目难度不是很大。主要方法是利用行列式的性质或者展开定理即可。而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进行变形、利用相似关系。06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15年的数一的填空题考查的是一个n行列式的计算,。今年16的数一、数三的填空题考查的是一个4阶带参数的行列式计算,用行列式的性质处理就行,还是考的比较基础。

第二章矩阵,本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识考大题。本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但

是除了这些还涉及到了矩阵的分块。16年只有数二了矩阵等价的判断确定参数,这题只要知道等价的判断条件,那还是比较容易的,就是进行一个初等变换找秩关系即可。

第三章向量,本章的重点较多,有概念、性质还有定理,出题方式主要以选择与大题为主。重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表出就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题,13年考查的则是向量组的等价,14年的选择题则考查了向量组的线性无关性。15年数一第20题结合向量空间的基问题考查了向量组等价的问题。16年数数一、数三第21题与数二23题考的同样的题,第二问考向量组的线性表示的问题。

第四章线性方程组,主要考点有两个:一是解的判定与解的结构、二是考解方程。考察的方式还是比较固定,直接给方程要求讨论解的情况、解方程或者通过其他的关系来转化为方程问题或者通过矩阵方程的形式来考。06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题,13年考查的第一道大题考查的形式不是很明显,但也是线性方程组求解的问题。14年的第一道大题就是线性方程组的问题,15年选择题考查了解的判定,数二、数三同一个大题里面考查了矩阵方程的问题。16年数一第20题矩阵方程解的判断和求解,数三第20题与数二第22题直接考线性方程解的判断和求解,数一第21题第二问解矩阵方程。16年数一、数三第21题与数二第23题第二问直接考矩阵方程解求解,基本都不需要大家做转换。

第五章矩阵的特征值与特征向量,每年大题都会涉及这章的内容。重点考查三个方面,一是特征值与特征向量的定义、性质以及求法;二是矩阵的相似对角化问题,三是实对称矩阵的性质以及正交相似对角化的问题。实对称矩阵的性质与正交相似对角化问题可以说每年必考,13年、12年、11年、10年、09年都考了。14考查的则是矩阵的相似对角化问题,是以证明题的形式考查的。15年数一、数二、数三选择题结合二次型正交化特点然后结合特征值定义考查;大题也是有一个题目相同,都是矩阵相似,然后对角化问题。16年数一数三第21题与数二第23题的第一问以考高次幂的形式出现,实质就是矩阵相似对角化问题。

第六章二次型,有两个重点:一是化二次型为标准形;二是正定二次型。前一个重点主要考查大题,有两种处理方法:配方法与正交变换法,而正交变换法是考查的重中之重。12年、11年、10年均以大题的形式出现,考查的是利用正交变换化二次型为标准形,而13年的最后一道大题考查的也是二次型的题目,但它考查的则是二次型的矩阵表示,另外也考到二次型的标准形,它是通过间接的方式求得特征值然后直接得出标准形的。后一考点正定二次型则以小题为主。14则是以填空题的形式出现的,考查的题目为已知二次型的负惯性指数为1,让求参数的取值范围。15年结合对角化考了个选择题。16年数一结合空间解析几何考了二次型的标准型,数三、数二正负惯性指数考察。

综合所述,线代每年的考题都比较固定,大题基本上在线性方程和特征值的角度出。所以建议17的同学在复习线代的时候从以下几个方面去把握

一、把线代基本的概念弄清楚,线代的概念要从定义的角度和形式上面去把握;

二、重视线代里面知识点的不同角度的转换关系,比如秩与解关系、行列式与秩关系等;

三、前期要把线代里面固定题型的方法弄透,比如齐次方程的基础解系是怎么求的、矩阵秩怎么求等。

三、考研数学一的线性代数的全部考试范围。

考试内容:行列式的概念和基本性质、行列式按行(列)展开定理。

1、了解行列式的概念,掌握行列式的性质;

2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。

考试内容:矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵矩阵的秩、矩阵的等价、分块矩阵及其运算。

1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质;

2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质;

3、理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵;

4、理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法;

向量的概念、向量的线性组合与线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量空间及其相关概念、维向量空间的基变换和坐标变换、过渡矩阵、向量的内积、线性无关向量组的正交规范化方法、规范正交基、正交矩阵及其性质。

1、理解n维向量、向量的线性组合与线性表示的概念;

2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法;

3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩;

4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系;

5、了解n维向量空间、子空间、基底、维数、坐标等概念;

6、了解基变换和坐标变换公式,会求过渡矩阵;

7、了解内积的概念,掌握线性无关向量组正交规范化的施密特方法;

8、了解规范正交基、正交矩阵的概念以及它们的性质。

考试内容:线性方程组的克莱姆法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件解空间、非齐次线性方程组的通解。

2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件;

3、理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法;

4、理解非齐次线性方程组解的结构及通解的概念;

5、掌握用初等行变换求解线性方程组的方法。

考试内容:矩阵的特征值和特征向量的概念、性质、相似变换、相似矩阵的概念及性质。

1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量;

2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法;

3、掌握实对称矩阵的特征值和特征向量的性质。

考试内容:二次型及其矩阵表示合同变换、与合同矩阵二次型的秩惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性。

1、掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理;

2、掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形;

3、理解正定二次型、正定矩阵的概念,并掌握其判别法。

未经允许不得转载:思思考研 » 考研线性代数哪里最难(考研线性代数部分哪里是重点应该怎么复习)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏